Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Artur Sikorski, ${ }^{\text {a }}$ Karol Krzymiński, ${ }^{\text {a }}$ Antoni Konitz ${ }^{\text {b,a }}$ and Jerzy Błażejowski ${ }^{\text {a }}$

${ }^{\text {a }}$ Faculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, and
${ }^{\text {b }}$ Department of Inorganic Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-952 Gdańsk, Poland

Correspondence e-mail: bla@chem.univ.gda.pl

Key indicators

Single-crystal X-ray study
$T=290 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
Disorder in solvent or counterion
R factor $=0.046$
$w R$ factor $=0.123$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

9-(2,6-Dibromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate

In the title compound, $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}^{-}$, adjacent cations are oriented either parallel or antiparallel. Together with the $\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}^{-}$anions, the antiparallel-oriented cations form layers in which the ions are linked via a network of $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ (O from the anions) and $\pi-\pi$ interactions (between the benzene rings). These layers, in turn, are linked via a network of five multidirectional $\pi-\pi$ interactions between the acridine rings, and the crystal structure is stabilized by electrostatic interactions between the ions. The acridine and independent benzene rings are mutually oriented at an angle of $35.9(3)^{\circ}$.

Comment

In the last 25 years or so, acridine-based derivatives have attracted interest as chemiluminescent agents, since they can be oxidized by $\mathrm{H}_{2} \mathrm{O}_{2}$, persulfates or peroxides to form lightemitting products (Zomer \& Jacquemijns, 2001; Rak et al., 1999). Phenyl acridine-9-carboxylates are particularly interesting compounds of this type, since they can be oxidized quite efficiently to electronically excited 9 -acridinones (Dodeigne et al., 2000; Razawi \& McCapra, 2000; Smith et al., 2000; Zomer \& Jacquemijns, 2001), which are known to be efficient light emitters (Boużyk et al., 2003). This is the reason why these compounds are widely applied as chemiluminescent indicators or fragments of chemiluminescent labels in immunological, medical, environmental and biochemical analyses (Becker et al., 1999; Dodeigne et al., 2000; Zomer \& Jacquemijns, 2001).

(I)

Continuing the search for new analytically useful chemiluminogens, we synthesized the title trifluoromethanesulfonate salt, (I), of dibromophenyl acridine-9-carboxylate, methylated at the endocyclic N atom, in order to study how the presence of heavy Br atoms affects the stability and chemiluminogenic properties of this group of derivatives. This paper, together with our earlier publications (Meszko et al., 2002; Sikorski et al., 2005a,b), thus extends the prospects of finding further interesting chemiluminogens.

Received 24 May 2005
Accepted 7 June 2005
Online 17 June 2005

Figure 1
The molecular structure of (I), showing the atom-labelling scheme and 25% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. Both disorder components are shown.

The bond lengths and angles within the cation of (I) may be regarded as typical (Table 1). With respective average deviations from planarity of 0.0280 and $0.0086 \AA$, the acridine and benzene ring systems are oriented at an angle of 35.9 (3) ${ }^{\circ}$ (the angle between the mean planes defined by all the non-H atoms of these systems; Fig. 1). The carboxyl group is twisted at an angle of $60.6(3)^{\circ}$ relative to the acridine skeleton (the angle between the mean planes defined by all the non- H atoms of the acridine system and atoms $\mathrm{C} 15, \mathrm{O} 16$ and O17). The H atoms of the methyl group occupy two orientations, rotated by 60° with respect to one another, each with an occupancy of 0.5 .

In the crystal structure, adjacent cations are oriented either parallel or antiparallel. Together with the $\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}^{-}$anions, the antiparallel-oriented cations form layers in which the molecules are linked via a network of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions involving an H atom from the benzene ring (at C 20) and atom O 30 of the $\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}^{-}$anion, bifurcated $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions involving an H atom from the acridine ring system (at C 7), an H atom from the benzene ring (at C 22) and atom O 29 of the $\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}^{-}$anion (Fig. 2 and Table 2), and $\pi-\pi$ interactions between the benzene rings (Fig. 2 and Table 3). These layers are linked via a network of five multidirectional $\pi-\pi$ interactions between acridine groups (Fig. 2 and Table 3). The crystal structure is stabilized by electrostatic interactions between the ions (Storoniak et al., 2000).

Experimental

The title compound was obtained by treating 2,6-dibromophenyl acridine-9-carboxylate (0.27 mmol , synthesized by heating acridine- 9 carboxylic acid (0.5 mmol) with a tenfold molar excess of thionyl chloride and reacting the product thus obtained with an equimolar

Figure 2
The arrangement of the ions in the unit cell of (I), viewed along the a axis. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are represented by dashed lines and the $\pi-\pi$ interactions by dotted lines. H atoms not involved in $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions have been omitted. [Symmetry codes: (i) $x-1, y, z-1$; (ii) $x, y, z-1$; (iii) $1-x, 1-y, 1-z$; (iv) $-x, 2-y, 1-z$; (v) $-x, 1-y,-z$.]
amount of 2,6-dibromophenol; Sato, 1996) with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in dichloromethane (4 ml). The crude salt was dissolved in ethanol (3 ml), filtered and precipitated in the presence of excess diethyl ether (150 ml). Elemental analysis: (\% found/calculated): C 43.4/42.5, H 2.2/2.3, N 2.1/2.2. Dark-yellow crystals of (I) suitable for X-ray investigations were grown from anhydrous ethanol (m.p. 481-483 K).

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{NO}_{2}{ }^{+} . \mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}^{-}$
$M_{r}=621.21$
Triclinic, $P \overline{1}$
$a=9.414$ (2) A
$b=11.041$ (2) \AA
$c=12.347$ (2) \AA
$\alpha=105.83(3)^{\circ}$
$\beta=103.87(3)^{\circ}$
$\gamma=107.40(3)^{\circ}$
$V=1103.7(6) \AA^{3}$

Data collection

Kuma KM4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.280, T_{\text {max }}=0.465$
4059 measured reflections 3860 independent reflections 1691 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.123$
$S=0.94$
3860 reflections
309 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.869 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 50 \\
& \quad \text { reflections } \\
& \theta=2.1-25.0^{\circ} \\
& \mu=3.83 \mathrm{~mm}^{-1} \\
& T=290(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.4 \times 0.3 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {int }}=0.076 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-12 \rightarrow 12 \\
& l=0 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \quad \text { intensity decay: } 3.0 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0687 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.59 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \quad \text { (Sheldrick, 1997) }
\end{aligned}
$$

Extinction coefficient: 0.0042 (11)

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

C9-C11	$1.417(7)$	C15-O17	$1.196(6)$
C9-C15	$1.505(8)$	O16-C18	1.413 (6)
N10-C12	$1.371(7)$	C18-C19	$1.371(8)$
N10-C26	$1.488(7)$	C19-Br24	$1.879(6)$
C15-O16	$1.336(7)$		
C9-C15-O16	$110.1(5)$	C15-O16-C18	$118.7(4)$
C9-C15-O17	$124.5(5)$	O16-C15-O17	$125.4(5)$
C9-C15-O16-C18	$-169.6(5)$	C15-O16-C18-C19	$-98.7(6)$
C11-C9-C15-O17	$-56.7(8)$	O16-C18-C19-Br24	$10.2(8)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C7-H7 \cdots O29				
C20-H20	0.93	2.52	$3.362(8)$	150
C22-H22 \cdots O29 $9^{\text {iii }}$	0.93	2.52	$3.413(8)$	161

Symmetry codes: (i) $x-1, y, z-1$; (ii) $x, y, z-1$; (iii) $1-x, 1-y, 1-z$.

Table 3
Geometry of the $\pi-\pi$ interactions $\left(\AA,{ }^{\circ}\right)$.

$C g I$	$C g J$	$C g \cdots C g$	Dihedral angle	Interplanar distance	Offset
1	$1^{\text {iv }}$	$3.968(3)$	0.0	$3.515(4)$	$1.841(4)$
1	$2^{\text {iv }}$	$3.610(4)$	2.1	$3.468(4)$	$1.003(4)$
2	$1^{\text {iv }}$	$3.610(4)$	2.1	$3.458(4)$	$1.037(4)$
2	$3^{\text {iv }}$	$3.836(4)$	7.1	$3.500(4)$	$1.570(4)$
3	$2^{\text {iv }}$	$3.835(4)$	7.1	$3.281(4)$	$1.986(4)$
4	4^{v}	$3.719(4)$	0.0	$3.462(4)$	$1.358(4)$

Symmetry codes: (iv) $-x, 2-y, 1-z$; (v) $-x, 1-y,-z$. Notes: $C g 1$ is the centroid of the ring $\mathrm{C} 9 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{N} 10 / \mathrm{C} 14 / \mathrm{C} 13, C g 2$ is the centroid of the ring $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 12 / \mathrm{C} 11, \mathrm{Cg} 3$ is the centroid of the ring $\mathrm{C} 5-\mathrm{C} 8 / \mathrm{C} 13 / \mathrm{C} 14$ and Cg 4 is the centroid of the ring C18-C23. $C g \cdots C g$ is the distance between ring centroids. The dihedral angle is that between the planes of $C g I$ and $C g J$. The interplanar distance is the perpendicular distance of $C g I$ from ring J. Offset is the perpendicular distance of ring I from ring J.

Methyl H atoms were located in difference Fourier syntheses and refined as a rigid rotating group, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=$
$1.5 U_{\text {eq }}(\mathrm{C})$; this group was refined as disordered over two orientations, each with an occupancy factor of 0.5 . All other H atoms were placed geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: KM-4 Software (Kuma Diffraction, 1989); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Over the period 2002-2005, this study was financed from State Funds for Scientific Research, grant No. 4 T09A 12323 (contract No. 0674/T09/2002/23), of the Polish State Committee for Scientific Research (KBN).

References

Becker, M., Lerum, V., Dickson, S., Nelson, N. C. \& Matsuda, E. (1999). Biochemistry, 38, 5601-5611.
Boużyk, A., Jóźwiak, L., Kolendo, A. Yu. \& Błażejowski, J. (2003). Spectrochim. Acta A, 59, 543-558.
Dodeigne, C., Thunus, L. \& Lejeune, R. (2000). Talanta, 51, 415-439.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kuma Diffraction (1989). Kuma KM-4 Software User's Guide. Version 3.1. Kuma Diffraction, Wrocław, Poland.
Meszko, J., Krzymiński, K., Konitz, A. \& Błażejowski, J. (2002). Acta Cryst. C58, o157-o158.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rak, J., Skurski, P. \& Błażejowski, J. (1999). J. Org. Chem. 64, 3002-3008.
Razawi, Z. \& McCapra, F. (2000). Luminescence, 15, 239-245, 245-249.
Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sikorski, A., Krzymiński, K., Konitz, A. \& Błażejowski, J. (2005a). Acta Cryst. C61, o50-o52.
Sikorski, A., Krzymiński, K., Konitz, A. \& Błażejowski, J. (2005b). Acta Cryst. C61, o227-o230.
Smith, K., Li, Z., Yang, J. J., Weeks, I. \& Woodhead, J. S. (2000). J. Photochem. Photobiol. A, 132, 181-191.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Storoniak, P., Krzymiński, K., Dokurno, P., Konitz, A. \& Błażejowski, J. (2000). Aust. J. Chem. 53, 627-633.
Zomer, G. \& Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana \& W. R. G. Baeyens, pp. 529549. New York: Marcel Dekker.

